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🚀 OSS Community Attendee 🚀
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🚀 Companies Attending 🚀
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Presented by Andy R. Terrel (NumFOCUS / NVIDIA)



Problem: Python Packaging lacks the ability to finely describe “hardware”

- No way to accurately describe the “hardware platform”
- What type of accelerators do you have (e.g. CUDA 11, CUDA 12, ROCM, TPU, etc.)
- What “compute capability” (e.g. SM 90, SM 85, etc.)
- What ARM version (e.g. ARMv7, ARMv8, etc.)
- What X86 version (e.g. x86_64-v2, x86_64-v3, etc)
- What special CPU instruction (e.g. AVX512, SSE, etc.)

- What about describing FPGA / ASIC support ?

- What about specific hardware function (e.g. AV1 encoding/decoding) ?
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Why “Wheel Variants” ?



Problem: Python Packaging lacks the ability to finely describe “hardware”
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Why “Wheel Variants” ?



Problem: Python Packaging lacks the ability to finely describe “hardware”

This can not be the best answer our community has - We must do better.
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Why “Wheel Variants” ?



Problem: Which “flavor” of PyTorch is this command supposed to download ?

This can not be the best answer our 

community has - We must do better.
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Why “Wheel Variants” ?

$ [uv] pip install transformers    # a package from HuggingFace that depends on PyTorch



Problem: Python Packaging lacks the ability to finely describe “hardware”

Some References:

- https://pypackaging-native.github.io/key-issues/gpus/ 

- https://pypackaging-native.github.io/key-issues/simd_support/ 
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Why “Wheel Variants” ?

https://pypackaging-native.github.io/key-issues/gpus/
https://pypackaging-native.github.io/key-issues/simd_support/
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Presented by Barry Warsaw (Python Steering Council / NVIDIA)



https://wheelnext.dev/philosophy_and_design_space/
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WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/


https://wheelnext.dev/philosophy_and_design_space/#evolution-not-revolution

 

 ~ Axiom 1 ~

“Evolution Not Revolution”
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WheelNext - Design Axioms



https://wheelnext.dev/philosophy_and_design_space/#if-you-dont-care-now-you-wont-care-later

 

 ~ Axiom 2 ~

“If you don't care now, you won't care later”

20

WheelNext - Design Axioms



https://wheelnext.dev/philosophy_and_design_space/#dont-focus-on-a-single-tool-or-service

 

 ~ Axiom 3 ~

“Don't focus on a single tool or service”
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WheelNext - Design Axioms



https://wheelnext.dev/philosophy_and_design_space/#favor-backward-compatible-changes-whenever-possible

 

 ~ Axiom 4 ~

“Favor backward compatible changes whenever possible”
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WheelNext - Design Axioms



https://wheelnext.dev/philosophy_and_design_space/#be-intentful-and-explicit-on-what-is-being-broken-and-why

 

 ~ Axiom 5 ~

“Be intentful & explicit on what is being broken and why”
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WheelNext - Design Axioms



https://wheelnext.dev/philosophy_and_design_space/#complexity-in-the-tooling-rather-than-user-experience

 

 ~ Axiom 6 ~

“Complexity in the tooling rather than user experience”
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WheelNext - Design Axioms
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Presented by Barry Warsaw (Python Steering Council / NVIDIA)



https://wheelnext.dev/philosophy_and_design_space/#proof-of-concept-minimum-viable-product-first-pep-second

 

“Proof of Concept First - PEP Second”
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WheelNext - Mode of Operation



https://wheelnext.dev/philosophy_and_design_space/#avoid-mission-creep

 

“Avoid mission creep”
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WheelNext - Mode of Operation



User Rationale04
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Presented by Emma Smith (MyPy Core / NVIDIA)



https://wheelnext.dev/proposals/pepxxx_wheel_variant_support/#rationale 

● A user wants to install a version of NumPy that is accelerated for their CPU architecture

● A user wants to install PyTorch / JAX / vLLM that is accelerated for their GPU architecture

● A user wants to install a version of mpi4py that has certain features enabled (e.g. specific 
MPI implementations for their hardware)

● SciPy wants to provide packages built against different BLAS libraries, like OpenBLAS and 
Accelerate on macOS. This is something they indirectly do today using different macOS 
platform tags
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Wheel Variant - User Rationale

https://github.com/wheelnext/wheelnext/pull/2#discussion_r1957200935


https://wheelnext.dev/proposals/pepxxx_wheel_variant_support/#rationale 

● A library maintainer wants to build their library for wasm32-wasi with and without pthreads 
support

● A library maintainer wants to build their library for Pyodide on an Emscripten platform with 
extensions for graphics compiled in

● A library maintainer wants to provide packages of their game library using different 
graphics backends

● Manylinux cannot express x86-64-v2 requirements in Manylinux_2_34
30

Wheel Variant - User Rationale

http://github.com/pypa/manylinux/issues/1725


Design & 
Feature Space05

31

Presented by Jonathan Dekhtiar (NVIDIA)
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- We need: Needs to allow “arbitrary metadata” 
=> (not GPU, CPU, TPU, FPGA, ASIC etc. or even hardware-focused)

- We do not want: not a “pre-approved list of tags” (e.g. CPU: arm64, x86_64, etc.)

- Why: 
- We can’t know today the use cases of tomorrow (python for quantum compute?)
- The compute landscape is becoming more complex, more optimized everyday. 
- We cannot hope to maintain a list of tags [too many, too many sources]
- Different python communities might use this feature for different purposes

Design Requirement - “Arbitrary Variant Definition”
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- We need: We need to be able to combine variant information coming from 
different sources [e.g. GPU Driver version & CPU support for AVX]

- We do not want: Wheel Variants to only be able to include WV information 
from one source.

- Why: 
- Wheel Variant “plugins” should be able to “simultaneously describe” a .whl file.

- We need to be able to combine information from different sources [GPU, CPU, etc.]

Design Requirement - “Arbitrary combination of METADATA”
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- We need: Wheel Variants should not interfere with the normal “python 
packaging/installer” workflow & ecosystem.

- We do not want: Wheel Variants to impact packages that don’t need it.

- Why: 
- This is a niche feature that only affect a small percentages of project

- Not every Python users/maintainers should have to care 

Design Requirement - “If you don’t need, you shouldn’t care”
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- We need: Wheel Variant design should include a mechanism to ensure these 
“special wheels” will be ignored by installers (e.g. uv, pip) that don’t support 
them:

- Not yet implement
- Old release who didn’t support them

- We do not want: To confuse an installer that doesn’t support Wheel Variants.

- Why: 
- It will be very hard to get the PEP accepted if it breaks any previous release of 

every installers: uv, pip, etc.

Design Requirement - “Do not break old installers”
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- We need: We need a standardized “plugin API” that all “build-backends” 
[setuptools], “installers” [pip, uv], “workflow managers” [pdm, poetry, uv] can 
use and rely on.

- We do not want: To depend on a public API inside of PIP: `from pip import XYZ`

- Why: 
- To guarantee “tool agnosticism”, we can not depend on a public API in one tool.

- PyPA has consistently refused to maintain any “public user code-API” inside PIP.

Design Requirement - “No Public API inside PIP”
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- We need: Ability to define “arbitrary metadata/tag” from outside the standard  
                packaging tooling ecosystem (installers, build backends, etc.)

- We do not want: Have to send PRs to any number projects to “declare” the
                           existence of a new metadata / tag.

- Why: 
- Maintainers of the installer/packaging ecosystem can not be expected to become 

expert on hardware (CPUs, GPUs, TPUs, ASIC, FPGAs, etc.)
=> they can’t be expected to review “FPGA-related code” 

- The maintenance load to review all these PRs would be significant

Design Requirement - “Externally Defined: Plugin centric”
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- We need: 
- We need a way for users to specify: 

- pluginA > pluginB (e.g. I care more about my GPU support than AVX support)
- Plugins needs a way to specify:

- featureA > featureB (e.g. x86-64-v2 is more important than AVX support)

- We do not want: a flat list of plugins and features with no relative priorities

- Why: 
- Not all features have the same relative importance
- Multiple variants can match a given system (e.g. a generic and a specific)

Design Requirement - “2D Prioritization: plugin & feature”
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- We need: It shouldn’t matter how many different variants are possible or 
exists. Deciding which Variant to install should be near instant. 

- We do not want: As we scale the number of variant / metadata, the install 
command take significant time.

- Why: 
- The search space can become very large very fast

- Combinatorial Products of features

Design Requirement - “Scaling should be cheap”
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- We need: A way to cache, manage cache, void cache of the “platform 
detection and variant resolution”. 

- We do not want: Want to re-analyze the entire platform for every single `pip 
install package` command

- Why: 
- Loading a bunch of libraries to check versions can be expensive 

- System calls to detect X, Y, Z can also be expensive 

Design Requirement - “Caching is important or critical”
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- We need: A way for an “expert user” to specify: they desire a specific variant 
or set of variants in this specific order. Don’t do perform automatic resolution.
`[uv] pip --variant=ABC package`

- We do not want: Have no way for the user to overwrite the automatic 
resolution if they so wishes.

- Why: 
- CI Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

Design Requirement - “Forced variant installation”
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- We need: A way for a user to “disable variant behavior”: 
`[uv] pip install –no-variant package`

- We do not want: Have no way for the user to disable variant installation.

- Why: 
- CI Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

Design Requirement - “Forced variant deactivation”



Technical 
Proposal06
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Presented by Jonathan Dekhtiar (NVIDIA)
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Design Requirement - “Arbitrary Variant Definition”

# Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

# METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`
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Design Requirement - “Arbitrary Variant Definition”

# Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

# METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

● Defines “4 variables”
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Design Requirement - “Arbitrary Variant Definition”

# Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

# METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

● Defines “4 variables”

● With “1 value assigned per variable”
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Design Requirement - “Arbitrary combination of METADATA”

# Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

# METADATA File

Variant-hash: 6b4c8391

Variant: fictional_hw :: architecture :: deepthought

Variant: fictional_hw :: compute_accuracy :: 10

Variant: fictional_hw :: compute_capability :: 10

Variant: fictional_hw :: humor :: 0

Variant: fictional_tech :: quantum :: foam

● Legal to combine “metadata”
from different sources/plugin.

=> Example: CUDA 12 with AVX

● Can really be anything so long it follows 
the “standard format”
<provider_name> :: <variable> :: <value>
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Design Requirement - “If you don’t need, you shouldn’t care”

# https://github.com/pypa/pip/blob/main/src/pip/_internal/models/wheel.py#L22

wheel_file_regex = r“””^
    (?P<namever>
        (?P<name>[^\s-]+?)
        -(?P<ver>[^\s-]+?)
    )
    (\-(?P<build>\d[^\s-]*))?
    -(?P<pyver>[^\s-]+?)
    -(?P<abi>[^\s-]+?)
    -(?P<plat>\S+)
\.whl$"””

match = wheel_file_regex.match(filename)
if not match:
      raise InvalidWheelFilename(f"{filename} is not a valid wheel filename.")

Design Requirement - “Do not break old installers”
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Design Requirement - “If you don’t need, you shouldn’t care”

# https://github.com/pypa/pip/blob/main/src/pip/_internal/models/wheel.py#L22

wheel_file_regex = r“””^
    (?P<namever>
        (?P<name>[^\s-]+?)
        -(?P<ver>[^\s-]+?)
    )
    (\-(?P<build>\d[^\s-]*))?
    (~(?P<variant_hash>[0-9a-f]{8}))?
    -(?P<pyver>[^\s-]+?)
    -(?P<abi>[^\s-]+?)
    -(?P<plat>\S+)
\.whl$"””

match = wheel_file_regex.match(filename)
if not match:
      raise InvalidWheelFilename(f"{filename} is not a valid wheel filename.")

Design Requirement - “Do not break old installers”

● A new capture group called “variant hash”

● Illegal with the “former wheel filename regex”

● Uses special character “~” to guarantee:
○ a variant_hash can’t match: `build_id`
○ only free special char RFC 3986 compliant

■ No escaping in bash, windows, macOS
■ No escaping in URLs
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# Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

# METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

HASH 36266d4d

Design Requirement - “If you don’t need, you shouldn’t care”

Design Requirement - “Do not break old installers”
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Design Requirement - “If you don’t need, you shouldn’t care”

-rw-r--r-- 1 user user 1266 Feb 20 06:50 dummy_project-0.0.1-py3-none-any.whl

-rw-r--r-- 1 user user 1778 Feb 20 06:50 dummy_project-0.0.1~36266d4d-py3-none-any.whl

-rw-r--r-- 1 user user 1773 Feb 20 06:50 dummy_project-0.0.1~4f8ae729-py3-none-any.whl

-rw-r--r-- 1 user user 1777 Feb 20 06:50 dummy_project-0.0.1~57768a46-py3-none-any.whl

-rw-r--r-- 1 user user 1795 Feb 20 06:50 dummy_project-0.0.1~6b4c8391-py3-none-any.whl

-rw-r--r-- 1 user user 1779 Feb 20 06:50 dummy_project-0.0.1~9091cdc4-py3-none-any.whl

-rw-r--r-- 1 user user 1760 Feb 20 06:50 dummy_project-0.0.1~e684be6f-py3-none-any.whl

Design Requirement - “Do not break old installers”

Standard Wheel

Wheel
Variants

# METADATA File
Variant-hash: 36266d4d
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Design Requirement - “No Public API inside PIP”

from variantlib.config import ProviderConfig

from my_plugin import __version__

class MyVariantPlugin:

    __provider_name__ = "my_plugin"

    __version__ = __version__

    def run(self) -> ProviderConfig | None:

        """If the plugin is able to determine this platform/machine supports

        custom "attributes/metadata" (defined and known by this plugin):

        => It returns a `ProviderConfig`, otherwise `None` (aka. ignore me).”””

        return ...

Design Requirement - “Externally Defined: Plugin centric”

[project.entry-points."variantlib.plugins"]

my_plugin = "my_plugin.plugin:MyVariantPlugin"
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Design Requirement - “No Public API inside PIP”

from importlib.metadata import entry_points

plugins = entry_points().select(group="variantlib.plugins")

for plugin in plugins:

    logger.info(f"Loading plugin: {plugin.name} - v{plugin.dist.version}")

    # Dynamically load the plugin class

    plugin_class = plugin.load()

    # Instantiate the plugin

    plugin_instance = plugin_class()

    # Call the `run` method of the plugin

    ... = plugin_instance.run()

    # do something with the result of the plugins

Design Requirement - “Externally Defined: Plugin centric”
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Design Requirement - “2D Prioritization: plugin & feature”

# pip.conf or variant.toml

[variantlib]

provider_priority = ["fictional_tech", "fictional_hw"]

● Per project: `variant.toml` or inside `pyproject.toml`

● [Tool Specific] PIP - directly inside `pip.conf`

● [Tool Specific] UV - directly inside `uv.toml`
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Design Requirement - “2D Prioritization: plugin & feature”

# variantlib

from attrs import field

from attrs import frozen

@frozen

class KeyConfig:

    key: str = field()

    values: list[str] = field()

# how to use it

KeyConfig(key="driver_version", values=["12.2.6", "12.2", "12"])
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Design Requirement - “2D Prioritization: plugin & feature”

# variantlib

from attrs import field

from attrs import frozen

@frozen

class ProviderConfig:

    provider: str = field()

    configs: list[KeyConfig] = field()

# how to use it

ProviderConfig(

    provider="provider_name",

    configs=[

        KeyConfig(key="attr_nameA", values=["7", "4", "8", "12"]),

        KeyConfig(key="attr_nameB", values=["3", "7", "2", "18", "22"])

    ]

)
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Design Requirement - “2D Prioritization: plugin & feature”

# variantlib

from variantlib.config import ProviderConfig

from my_plugin import __version__

class MyVariantPlugin:

    __provider_name__ = "my_plugin"

    __version__ = __version__

    def run(self) -> ProviderConfig | None:

        return ProviderConfig(

            provider="my_plugin",

            configs=[

                KeyConfig(key="attr_nameA", values=["7", "4", "8", "12"]),

                KeyConfig(key="attr_nameB", values=["3", "7", "2", "18", "22"])

            ]

        )
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Design Requirement - “2D Prioritization: plugin & feature”

# variantlib

from attrs import field

from attrs import frozen

@frozen

class VariantMeta:

    provider: str = field()

    key: str = field()

    value: str = field()

# Using it

VariantMeta(provider="OmniCorp", key="access_key", value="secret_value")

Variant: OmniCorp :: access_key :: secret_value
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Design Requirement - “2D Prioritization: plugin & feature”

# variantlib

from attrs import field

from attrs import frozen

@frozen

class VariantDescription:

    data: list[VariantMeta] = field()

# how to use it

VariantDescription([

    VariantMeta(provider="gpu_provider", key="driver_version", value="A.B.C"),

    VariantMeta(provider="cpu_provider", key="avx512", value="true"),

])

Variant: gpu_provider :: driver_version :: A.B.C

Variant: cpu_provider :: avx512 :: true
HASH abcd1234
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Design Requirement - “2D Prioritization: plugin & feature”

config_custom_hw = ProviderConfig(

    provider="custom_hw",

    configs=[

        KeyConfig(key="driver_version", values=["1.3", "1.2", "1.1", "1"]),

        KeyConfig(key="hw_architecture", values=["3.4", "3"]),

    ],

)

config_networking = ProviderConfig(

    provider="networking",

    configs=[

        KeyConfig(key="speed", values=["10GBPS", "1GBPS", "100MBPS"]),

    ],

)
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Design Requirement - “2D Prioritization: plugin & feature”

Ordering / Prioritization logic:

● More metadata match => Better

● Plugin A > Plugin B => User defined

● PluginA.featureA > PluginA.featureB => Plugin defined

Consequence:

● A variant tagged by all plugin (e.g. GPU & CPU variant) is prioritized over “just GPU or just CPU”

● A variant with more “metadata” (e.g. feature1, feature2, feature3, etc.) is more specific
=> more prioritized
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Design Requirement - “2D Prioritization: plugin & feature”

Example:

● Plugin A => featureA
● Plugin B => featureB

Order:

● [pluginA.featureA, pluginB.featureB]         => hash => abcd1234
● [pluginA.featureA]                                           => hash => 01234567
● [pluginB.featureB]                                           => hash => ab12cd34
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[D 2025-02-20 15:33:01.863 mockpip.commands.install:108 v0.1.0] [Variant: 0000] `109a2da5`: NOT FOUND ...

[D 2025-02-20 15:33:01.863 mockpip.commands.install:108 v0.1.0] [Variant: 0001] `c0111c07`: NOT FOUND ...

[D 2025-02-20 15:33:01.863 mockpip.commands.install:108 v0.1.0] [Variant: 0002] `b5789fbd`: NOT FOUND ...

[...]

[D 2025-02-20 15:33:02.065 mockpip.commands.install:108 v0.1.0] [Variant: 5984] `8a11085e`: NOT FOUND ...

[D 2025-02-20 15:33:02.065 mockpip.commands.install:108 v0.1.0] [Variant: 5985] `d0dff1f7`: NOT FOUND ...

[D 2025-02-20 15:33:02.065 mockpip.commands.install:108 v0.1.0] [Variant: 5986] `44da9896`: NOT FOUND …

[I 2025-02-20 15:33:02.065 mockpip.commands.install:102 v0.1.0] ###### Best Variant: `9091cdc4` ######

[I 2025-02-20 15:33:02.065 mockpip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: quantum :: SUPERPOSITION

[I 2025-02-20 15:33:02.065 mockpip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: risk_exposure :: 25

[I 2025-02-20 15:33:02.065 mockpip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: technology :: auto_chef

[I 2025-02-20 15:33:02.065 mockpip.commands.install:105 v0.1.0] ######################################

[I 2025-02-20 15:33:02.065 mockpip.commands.install:130 v0.1.0] Installing: sandbox_project-0.0.1~9091cdc4-py3-none-any.whl ...

Design Requirement - “Scaling should be cheap”
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[uv] pip install --no-variant dummy_project

Design Requirement - “Forced variant deactivation”
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[uv] pip install --variant=9091cdc4 dummy_project

Design Requirement - “Forced variant installation”
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# First call - analyze the platform

[uv] pip install dummy_project

# Second call - reuse the platform analysis

[uv] pip install sandbox_project

Design Requirement - “Caching is important or critical”



Parts that 
needs work07
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Presented by Jonathan Dekhtiar (NVIDIA)



Variant Build “user experience”: Build Backend
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- We need: 
- A build backend that support Wheel Variant to “demo the idea”.
- What should be standardized between build backends and what should not.



Variant Build “user experience”: Build Matrix
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- We need: A smooth experience to build a large matrix of variants
=> Let’s build 200 variants of PyTorch.

- We do not want: A complicated process to do that
- Packager experience should be simple and intuitive
- No way to define a cross product of “features”



Validating “plugin” design to work with `uv` 
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- We need: Plugin to be functional with both pip/poetry/pdm/hatch/uv/etc. 

- Potential Problem (to verify): 
- “entrypoint” is a very python-based feature and plugins provide a Python 

interface. Let’s ensure `uv` can effectively call the python interface (from 
ruff) and cache the result.

- If not, we need to find a better idea



Is a “variant hash” the best approach ?
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- Pros:
- It’s incredibly fast => hash table
- Allows arbitrary combination of any arbitrary metadata

- Cons:
- I want the CUDA 12 and AVX512 package => which one is it ?
- No way to have “named configurations”



MVP from `mockpip` to “real” `pip`
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- We need: A real end-to-end implementation with pypa/pip

- We do not want: A proof-of-concept using a super minimalist and narrow 
“mock”pip implementation.



Verifying Scaling => QuanSight RETEX
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- We need: Verify this approach scales to crazy size



Writing the PEP
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Community
Engagement
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Presented by Jonathan Dekhtiar (NVIDIA)



WheelNext & Community  - OSS Community Engagement

Save-The-Date: Friday March 21st 2025  ~ 9am -> 1.30pm
WheelNext Community Summit @ META [Menlo Park]

- Validating and refining WheelNext’s roadmap

- Aligning on proposals & problem statements

- Working together on common solutions for the Accelerated Compute Space

Attendees:  
Companies: Anaconda, Astral.sh, Amazon/AWS, Bloomberg, Google, META, Microsoft, NVIDIA, Quansight, RedHat 
  
OSS:  Astropy, Jupyter, GPU-Mode, Numba, Numpy, Scikit-Learn, XGBoost, PSF (Python OSS) 



Contributehttps://github.com/wheelnext

Participatehttps://wheelnext.dev

Let’s engagehttps://discuss.python.org/c/packaging/

Join us on Discorddiscord.com/channels/803025117553754132/ 

https://github.com/wheelnext
https://wheelnext.dev
https://discuss.python.org/c/packaging/
https://discord.com/channels/803025117553754132/1279204588196597811


Thank you for your attention


