WheelNext
Engineering
Review

AN

February 20, 2025

©)

Community
Updates

ted by A rel (NumFOCUS / NVIDIA)

VA VN
0SS Community Attendee

444 ¢ 3

SN\
/# Companies Attending #

444 ¢ 4

<3

NVIDIA

i
47
%
o
Ya,

N

ANACONDA

VA VAN
https://github.com/wheelnext

— O wheelnext Q Type (/) to search 38 -

() Overview [Repositories 41) Discussions [Projects 2 @ Packages A\ Teams 10 A People 19 |~ Insights &3 Settings

wheelnext
Follow
® View as: Public ~

P README. md 7
You are viewing the README and pinned
repositories as a public user.

WheelNext ot et
. Get started with tasks that most successful

organizations complete.

Top discussions this past month

QI C ity]
Everybody !

o0 Co @

View all discussions

People

GO 4
FCGO® @

LICENSE _ DISCORD PYPA WHEELNEXT A2 - *
GIOKT K)
What is WheelNext i

This repo is a place to collaborate on proofs of concept for python wheels in a public open space. It is meant to organize work

https://github.com/wheelnext

VA VAN
https://github.com/wheelnext

— O wheelnext

() Overview (] Repositories 41 () Discussions [Projects 2 & Packages Ai Teams 10 2 People 19 [~ Insights 03 Settings

wheelnext

k 444 ¢

https://github.com/wheelnext

= O faster-cpython / Projects

@ Fancy CPython Board
[™) Board ~ M List

= Filter by keyword or by field

O Todo 12

> Draft

Merge all "BINARY_OP" specializations.

(© ideas #441
Identify flow of references in C

assist with immortal objects implementation

(® multi-core-python #79
PEP for Per-Interpreter GIL

(© multi-core-python #80

Move the global runtime config to
_PyRuntimeState

solve GILState-for-subinterpreters

(© ideas #163

Windows startup time

© ideas #102

/

VAN

https://github.com

/wheelnext

Fancy CPython Board

O InProgress 2

(¢] 73 Draft

Implement PEP 669

) Draft

Faster integers

@

O InReview ©

Q Type (/] to search 8

O Done 228

(® cpython #94808

Metabug: Improving C-level coverage

@ ideas #480

Measuring the significance of different
benchmarking approaches with A/A testing

19 pyperformance #197

Add benchmarks for ctypes function call
overhead

@ ideas #469 ()
Fix line numbers generated by the compiler

7 Draft (23
Lock Around Extension Loading-related
Operations

{_} Draft e
PEP 554 re-writes
(© cpython #101659 (5]

Isolate the Default Object Allocator between
Interpreters

O Abandoned 5

@) ideas #181

move _Py_unicode_s1
_PyRuntimeState.glo

@ ideas #182

move _Py_exc_state,
_Py_exc_state.PyExc
_PyRuntimeState.glo

@ ideas #64

Faster startup -- Exp¢

@ ideas #261
Work out execution st

@) ideas #208

Work towards semi-fc

https://github.com/wheelnext

VAN

https://pypackaging-native.github.io/

|~ pypackaging-native

pypackaging-native

Home
Meta topics >
Key issues >

Other issues
Background >
References

Glossary

GitHub
D Q Search 152 ¥ 16

H o m e Table of contents
Introduction
Meta topics
Introduction pell
Contributing
Packaging is an important and time-consuming part of authoring and maintaining Python Acknowledgements
packages. This is particularly true for projects that are not pure Python but contain code that

needs to be compiled, and have to deal with distributing compiled extensions and with build

dependencies. Many projects in the PyData ecosystem - which includes scientific computing,

data science and ML/AI projects - fall into that category. This site aims to provide an overview of

the most important Python packaging issues for such projects, with in-depth explanations and

references.

The content on this site is meant to provide insights and good reference material. This will
hopefully provide common ground when discussing potential solutions for those problems or
design changes in Python packaging as a whole or in individual packaging tools.

The content is divided into "meta topics" and "key issues". Meta topics are mainly descriptions of
aspects of Python packaging that are more or less inherent to the whole design of it, and
consequences and limitations that follow from that. Key issues are more specific pain points felt
by projects with native code. Key issues may also be more tractable to devise solutions or
workarounds for.

https://pypackaging-native.github.io/

N WheelNext

WheelNext

Welcome to WheelNext
Philosophy and Design Space
Community Updates
WheelNext Proposals

Glossary

VA VAN
https://wheelnext.dev

ﬁ Q Search

Welcome to WheelNext

Introduction

Content to be added here.

Contributing
All contributions are very welcome and appreciated! Ways to contribute include:

¢ Improving existing content on the website: extending or clarifying descriptions, adding
relevant references, diagrams, etc.
¢ Providing feedback on existing content

* Proposing new topics for inclusion on the website, and writing the content for them

¢ ... and anything else you consider useful!

The content for this website is maintained on GitHub.

GitHub
wo ¥2

Table of contents
Introduction
Contributing

Acknowledgements

https://wheelnext.dev

2

PEP XOXX:
Wheel Variant

N

o)

Problem

Statement

ted by Andy R. Terrel (NumFOCUS /N

IA)

11

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

- No way to accurately describe the “hardware platform”
- What type of accelerators do you have (e.g. CUDA 11, CUDA 12, ROCM, TPU, etc.)
- What “compute capability” (e.g. SM 90, SM 85, etc.)
- What ARM version (e.g. ARMv7, ARMvS, etc.) O
- What X86 version (e.g. x86_64-v2, x86_64-v3, etc)
- What special CPU instruction (e.g. AVX512, SSE, etc.)

@)
- What about describing FPGA / ASIC support ?

- What about specific hardware function (e.g. AV1 encoding/decoding) ?

444 ¢ 12

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

PyTorch Build Stable (2.5.1) Preview (Nightly)

Your OS Linux Windows
Package Conda LibTorch Source

Language Python C++/Java

CUDA CUDA CUDA
Compute Platform 118 121 124 ROCm 6.2 CPU

pip3 install torch torchvision torchaudio --index-url https://download.pyt

Run this Command: oreh. orgwhifepy

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

PyTorch Build Stable (2.5.1) Preview (Nightly)

Your OS

Package
Language

CPU

R—‘“'\S pip3 install torch torchvision torchaudio --index-url https://download.pyt

--u> Command: orch.oxrg/whl/cpu

VAN
Why “Wheel Variants” ?

Problem: Which “flavor” of PyTorch is this command supposed to download ?

$ [uv] pip install transformers # a package from HuggingFace that depends on PyTorch

PyTorch Build Stable (2.5.1)

Your OS Linux

O Package Conda

anguage a“ n

cor_ . 2 G . aS e ROCM 62 cPU

_po install torch torchvision torchaudio --index-url https://download.pyt

Runtl Gom orch.oxg/whl/cpu

15

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

* Some References:

- https://pypackaging-native.qithub.io/key-issues/gpus/

O. https://pypackaqging-native.qgithub.io/key-issues/simd support/

16

https://pypackaging-native.github.io/key-issues/gpus/
https://pypackaging-native.github.io/key-issues/simd_support/

Design
02 Axioms

Presented by Barry Warsaw (Python Steering Council / NVIDIA)

17

VA VN
WheelNext - Desigh Axioms

https.//wheelnext.dev/philosophy and design space/ O

k 444 ¢ 18

https://wheelnext.dev/philosophy_and_design_space/

VA VN
WheelNext - Desigh Axioms

https://wheelnext.dev/philosophy and design space/#tevolution-not-revolution

~ Axiom 1 ~

“Evolution Not Revolution”

19

VA VN
WheelNext - Desigh Axioms

https://wheelnext.dev/philosophy and design space/#if-you-dont-care-now-you-wont-care-later

~ Axiom 2 ~

O

“If you don't care now, you won't care later”

444 ¢ 20

VA VN
WheelNext - Desigh Axioms

https://wheelnext.dev/philosophy and design space/t#tdont-focus-on-a-single-tool-or-service

~ Axiom 3 ~

O

“Don't focus on a single tool or service”

444 ¢ 21

VA VN
WheelNext - Desigh Axioms

https://wheelnext.dev/philosophy and design space/ttfavor-backward-compatible-changes-whenever-possible

~ Axiom 4 ~

O

“Favor backward compatible changes whenever possible
O

444 ¢ 22

VA VN
WheelNext - Desigh Axioms

https://wheelnext.dev/philosophy and design space/t#tbe-intentful-and-explicit-on-what-is-being-broken-and-why

~ Axiom 5 ~

O

“Be intentful & explicit on what is being broken and why’
@)

444 ¢ 23

VA VN
WheelNext - Desigh Axioms

https://wheelnext.dev/philosophy and design space/ttcomplexity-in-the-tooling-rather-than-user-experience

~ AXxiom 6 ~

“Complexity in the tooling rather than user experience”
O

24

N

03

Mode Of
Operatlon

ted by Barry Warsaw (Python

ncil / NVIDIA

25

VAN
WheelNext - Mode of Operation

https://wheelnext.dev/philosophy and design space/#proof-of-concept-minimum-viable-product-first-pep-second

“Proof of Concept First - PEP Second” O

444 ¢ 26

VAN
WheelNext - Mode of Operation

https://wheelnext.dev/philosophy and design space/#tavoid-mission-creep

“Avoid mission creep”

27

04 User Rationale g

Presented by Emma Smith (MyPy Core / NVIDIA)
°000
- 28

VAN

Wheel Variant - User Rationale

https://wheelnext.dev/proposals/pepxxx wheel variant support/#rationale

e A user wants to install a version of NumPy that is accelerated for their CPU architecture
e A user wants to install PyTorch / JAX / vLLM that is accelerated for their GPU architecture O

e A user wants to install a version of mpi4py that has certain features enabled (e.g. specific
'®) MPI implementations for their hardware)

e SciPy wants to provide packages built against different BLAS libraries, like OpenBLAS and
Accelerate on macOS. This is something they indirectly do today using different macOS
platform tags

444 ¢ PAS)

https://github.com/wheelnext/wheelnext/pull/2#discussion_r1957200935

VAN

Wheel Variant - User Rationale

https://wheelnext.dev/proposals/pepxxx wheel variant support/#rationale

e A library maintainer wants to build their library for wasm32-wasi with and without pthreads
support

e A library maintainer wants to build their library for Pyodide on an Emscripten platform witIO
extensions for graphics compiled in

e A library maintainer wants to provide packages of their game library using different
graphics backends

e Manylinux cannot express x86-64-v2 requirements in Manylinux_2_34

444 ¢ 30

http://github.com/pypa/manylinux/issues/1725

N

05

Desigh &
Feature Space

ted by Jo Dekhtiar (NV

31

VAN

Design Requirement - “Arbitrary Variant Definition”

- We need: Needs to allow “arbitrary metadata”
=> (not GPU, CPU, TPU, FPGA, ASIC etc. or even hardware-focused)

- We do not want: not a “pre-approved list of tags™ (e.g. CPU: arm64, x86_64, etc.)

Wy O

We can’t know today the use cases of tomorrow (python for quantum compute?)
The compute landscape is becoming more complex, more optimized everyday.
We cannot hope to maintain a list of tags [too many, too many sources]
Different python communities might use this feature for different purposes

444 ¢ 32

VAN

Design Requirement - “Arbitrary combination of METADATA”"

O

We need: We need to be able to combine variant information coming from
different sources [e.g. GPU Driver version & CPU support for AVX]

We do not want: Wheel Variants to only be able to include WV information
from one source. O

Why:
- Wheel Variant “plugins” should be able to “simultaneously describe” a .whl file.

- We need to be able to combine information from different sources [GPU, CPU, etc.]

444 ¢ 33

VAN

Design Requirement - “If you don't need, you shouldn’t care”

O

We need: Wheel Variants should not interfere with the normal “python

packaging/installer” workflow & ecosystem.

We do not want: Wheel Variants to impact packages that don'’t need it.

O

Why:
- This is a niche feature that only affect a small percentages of project

- Not every Python users/maintainers should have to care

444 ¢ 34

VAN

Design Requirement - “Do not break old installers”

- We need: Wheel Variant design should include a mechanism to ensure these
“special wheels” will be ignored by installers (e.g. uv, pip) that don’t support

them:
Not yet implement
- Old release who didn’t support them

- We do not want: To confuse an installer that doesn’t support Wheel Variants.

O— Why:

It will be very hard to get the PEP accepted if it breaks any previous release of
every installers: uv, pip, etc.

444 ¢ 35

VAN
Design Requirement - “No Public API inside PIP”

- We need: We need a standardized “plugin API” that all “build-backends”
[setuptools], “installers” [pip, uv], “workflow managers” [pdm, poetry, uv] can
use and rely on.

- We do not want: To depend on a public API inside of PIP: “from pip import XYZ‘O

- Why:
@) i

To guarantee “tool agnosticism”, we can not depend on a public APl in one tool.

- PyPA has consistently refused to maintain any “public user code-API” inside PIP.

444 ¢ 36

VAN

Design Requirement - “Externally Defined: Plugin centric”

We need: Ability to define “arbitrary metadata/tag” from outside the standard
packaging tooling ecosystem (installers, build backends, etc.)

We do not want: Have to send PRs to any number projects to “declare” the
existence of a new metadata / tag.

O
- Why:

Maintainers of the installer/packaging ecosystem can not be expected to become
expert on hardware (CPUs, GPUs, TPUs, ASIC, FPGAs, etc.)
=> they can’t be expected to review “FPGA-related code”

- The maintenance load to review all these PRs would be significant

444 ¢ 37

VAN

Design Requirement - “2D Prioritization: plugin & feature”

- We need:
- We need a way for users to specify:
- pluginA > pluginB (e.g. | care more about my GPU support than AVX support)
- Plugins needs a way to specify:
- featureA > featureB (e.g. x86-64-v2 is more important than AVX support)

- We do not want: a flat list of plugins and features with no relative priorities

@)
- Why:

Not all features have the same relative importance
Multiple variants can match a given system (e.g. a generic and a specific)

38

VAN

Design Requirement - “Scaling should be cheap”

- We need: It shouldn’t matter how many different variants are possible or
exists. Deciding which Variant to install should be near instant.

- We do not want: As we scale the number of variant / metadata, the install
command take significant time. O

- Why:
@) i

The search space can become very large very fast

- Combinatorial Products of features

444 ¢ 39

VAN

Design Requirement - “Caching is important or critical”

- We need: A way to cache, manage cache, void cache of the “platform
detection and variant resolution”.

- We do not want: Want to re-analyze the entire platform for every single "pip
install package’ command O

- Why:
@) i

Loading a bunch of libraries to check versions can be expensive

- System calls to detect X, Y, Z can also be expensive

444 ¢ 40

VAN

Design Requirement - “Forced variant installation”

o

We need: A way for an “expert user” to specify: they desire a specific variant
or set of variants in this specific order. Don’t do perform automatic resolution.
‘[uv] pip --variant=ABC package’

We do not want: Have no way for the user to overwrite the automatic
resolution if they so wishes. O

Why:
- Cl Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

444 ¢ 4]

VAN

Design Requirement - “Forced variant deactivation”

- We need: A way for a user to “disable variant behavior”:
“[uv] pip install —no-variant package

- We do not want: Have no way for the user to disable variant installation.

- Why:
- CI Systems may use this
O . .
- Advanced users with specific use-cases

- Going around a bug in a specific variant

444 ¢ 42

06

Technical

Proposal

ted by Jo

43

VAN

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 36266d4d e Plugin Name: "fictional_hw"

Variant { fictional_hw }: architecture :: HAL9000
Variant] fictional_hw |: compute_accuracy :: @
Variant] fictional_hw |: compute_capability ::

fictional_hw J: humor :: 2

444 ¢ 44

VAN

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File
Variant-hash: 36266d4d e Plugin Name: "fictional_hw"

Variant: fictional_hw : i architecture :: HALP©OOO . .
- e Defines “4 variables” .

Variant: fictional_hw :3j compute_accuracy ::

Variant: fictional_hw : 3 compute_capability |::

(Variant: fictional_hw ::{ humor :: 2

444 ¢ 45

VA VN
Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File
Variant-hash: 36266d4d e Plugin Name: "fictional_hw"

Variant: fictional_hw :: architedture :: HAL9000 . .
- y e Defines “4 variables” .

Variant: fictional_hw :: compute_accuracy :: ©

Variant: fictional_hw :: computecapability :: e With “1value assigned per variable”

(Variant: fictional_hw ::

444 ¢ 46

VA VN
Design Requirement - “Arbitrary combination of METADATA”"

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl
METADATA File

Variant-hash: 6b4c8391

deepthought) Legal to combine “metadata”

Variant: fictional_hw :: architecture :: ; <
from different sources/plugin.

Variant: fictional_hw :: compute_accuracy :: 10

Variant: fictional_hw :: compute_capability :: 10 => Example: CUDA 12 with AVX
Variant: fictional_hw :: humor :: 0

Can really be anything so long it follows
the “standard format”
<provider_name> :: <variable> :: <value>

Variant: fictional_tech :: quantum :: foam

VAN

Design Requirement - “If you don't need, you shouldn’t care”

Design Requirement - “Do not break old installers”

https://github.com/pypa/pip/blob/main/src/pip/_internal/models/wheel.py#L22

wheel_file_regex = r“""

(?P<namever>
(?P<name>[~*\s-]+?)
-(?P<ver>["\s-]+?)

)

(\-(?P<build>\d[*\s-]%*))?

- (?P<pyver>[*\s-]+?)

-(?P<abi>[*\s-]+7?)

-(?P<plat>\S+)

(\.wh1l$"""

match = wheel_file_regex.match(filename)
if not match:

raise InvalidWheelFilename(f"{filename} is not a valid wheel filename.")

VAN

Design Requirement - “If you don't need, you shouldn’t care”

Design Requirement - “Do not break old installers”

https://github.com/pypa/pip/blob/main/src/pip/_internal/models/wheel.py#L22

Wheel_file_regex N
(?P<namever> o "
(?P<name>[*\s-]+?) e A new capture group called *variant hash
- (?P<ver>[*\s-]+?)

lllegal with the “former wheel filename regex”
2D hi141d \rlr/\\o 1*\\')

(

7 ? . “_n

(?P<variant_ hash>[0 9a-1{8})) e Uses special character “~" to guarantee:
"('Q'F. PYVeT = (o]T'}

2P<abi>["\s-]+?) o avariant_hash can’'t match: ~build_id"

- (?P<plat>\S+) o only free special char RFC 3986 compliant
m No escaping in bash, windows, macOS
m No escapingin URLs

)
AN
(~

match = wheel_file_regex.match(filename)
if not match:

raise InvalidWheelFilename(f"{filename} is not a valid wheel filename.")

VAN

Design Requirement - “If you don't need, you shouldn’t care”

Design Requirement - “Do not break old installers”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 36266d4d
Variant:ffictional_hw :: architecture :: HAL900O
Variant:| fictional_hw :: compute_accuracy :: ©

Variant:| fictional_hw :: compute_capability :: 6 :> HASH :> 36266d4d

:\fictional_hw :: humor :: 2

444 ¢ 50

VAN

Design Requirement - “If you don’t need, you shouldn't care” O

Design Requirement - “Do not break old installers”

-rw-r--r-- :50 dummy_project-0.0.1-py3-none-any.whl Standard Wheel

frw-r--r-- : dummy_project-0.0.1~36266d4d-py3-none-any.

-rw-r--r-- : dummy_project-0.0.|~4f8ae729-py3-none-any.

-rw-r--r-- : dummy_project-0.0.1~57768a46-py3-none-any. Wheel

-rw-r--r-- : dummy_project-0.0.1~6b4c8391-py3-none-any. Variants

-rw-r--r-- : dummy_project-0.0.1~9091cdc4-py3-none-any.
dummy_project-0.0.1~e684be6f-py3-none-any.

METADATA File
Variant-hash: 36266d4d

VAANVEN
Design Requirement - “No Public API inside PIP”

Design Requirement - “Externally Defined: Plugin centric”

[project.entry-points."variantlib.plugins"]

my_plugin = "my_plugin.plugin:MyVariantPlugin"

from variantlib.config import ProviderConfig

from my_plugin import __version__

class MyVariantPlugin:
__provider_name__ = "my_plugin”

__version__ = __version__

def run(self) -> ProviderConfig | None:
"""If the plugin is able to determine this platform/machine supports

custom "attributes/metadata” (defined and known by this plugin):

=> It returns a ‘ProviderConfig', otherwise ‘“None® (aka. ignore me).”"”

return ...

VAANVEN
Design Requirement - “No Public API inside PIP”

Design Requirement - “Externally Defined: Plugin centric”

from importlib.metadata import entry_points

plugins = entry_points().select(group="variantlib.plugins")

for plugin in plugins:

logger.info(f"Loading plugin: {plugin.name} - v{plugin.dist.version}")

Dynamically load the plugin class
plugin_class = plugin.load()

Instantiate the plugin

plugin_instance = plugin_class()

Call the “run’ method of the plugin

. = plugin_instance.run()

do something with the result of the plugins

VAANVEN

Design Requirement - “2D Prioritization: plugin & feature”

pip.conf or variant.toml

[variantlib]

provider_priority = ["fictional_tech", "fictional_hw"]

e Per project: “variant.toml or inside " pyproject.toml’

e [Tool Specific] PIP - directly inside " pip.conf’

e [Tool Specific] UV - directly inside ~uv.toml®

54

VAANVEN

Design Requirement - “2D Prioritization: plugin & feature”

variantlib
from attrs import field

from attrs import frozen

@frozen
class KeyConfig:
key: str = field()
values: list[str] = field()

how to use it

KeyConfig(key="driver_version", values=["12.2.6", "12.2", "12"])

55

VAANVEN

Design Requirement - “2D Prioritization: plugin & feature”

variantlib
from attrs import field

from attrs import frozen

@frozen
class ProviderConfig:
provider: str = field()

configs: list[KeyConfig] = field()

how to use it
ProviderConfig(
provider="provider_name",
configs=[
KeyConfig(key="attr_nameA", values=["7", "4", "8",
KeyConfig(key="attr_nameB", values=["3", "7", "2"

’ ’

VA VAN

Design Requirement - “2D Prioritization: plugin & feature”

variantlib

from variantlib.config import ProviderConfig

from my_plugin import __version__

class MyVariantPlugin:
__provider_name__ = "my_plugin"

__version__ = __version__

def run(self) -> ProviderConfig | None:
return ProviderConfig(
provider="my_plugin",

configs=[

KeyConfig(key="attr_nameA"} values=["7", "4", "8",
KeyConfig(key="attr_nameB"} values=["3", "7", "2",

VA VAN

Design Requirement - “2D Prioritization: plugin & feature”

variantlib
from attrs import field

from attrs import frozen

@frozen

class VariantMeta:
provider: str = field()
key: str = field()
value: str = field()

Using it

VariantMeta(provider="0OmniCorp", key="access_key", value="secret_value")

Variant: OmniCorp :: access_key :: secret_value

VA VAN

Design Requirement - “2D Prioritization: plugin & feature”

variantlib
from attrs import field

from attrs import frozen

@frozen
class VariantDescription:

data: list[VariantMeta] = field()

how to use it
VariantDescription(|
VariantMeta(provider="gpu_provider", key="driver_version", value="A.B.C"),

VariantMeta(provider="cpu_provider", key="avx512", value="true"),

)

. gpu_provider :: driver_version :: A.B.C

. ms) abcd1234
. cpu_provider :: avx512 :: true

VA VAN

Design Requirement - “2D Prioritization: plugin & feature”

config_custom_hw = ProviderConfig(
provider="custom_hw",
configs=[
KeyConfig(key="driver_version", values=["1.3",

KeyConfig(key="hw_architecture", values=["3.4",

config_networking = ProviderConfig(
provider="networking",
configs=[
KeyConfig(key="speed", values=["18GBPS", "1GBPS", "100MBPS"]),

VAN

Design Requirement - “2D Prioritization: plugin & feature”

Ordering / Prioritization logic:
e More metadata match => Better
e Plugin A > Plugin B => User defined

e PluginA.featureA > PluginA.featureB => Plugin defined

Consequence:
e Avariant tagged by all plugin (e.g. GPU & CPU variant) is prioritized over “just GPU or just CPU”"

A variant with more “metadata” (e.g. featurel, feature2, feature3, etc.) is more specific
=> more prioritized

VAN

Design Requirement - “2D Prioritization: plugin & feature”

Example:

e Plugin A => featureA
e Plugin B => featureB

Order:

e [pluginA.featureA, pluginB.featureB] => hash => abcd1234
e [pluginA.featureA] => hash => 01234567
e [pluginB.featureB] => hash => abl2cd34

444 ¢ 62

2025-02-20
2025-02-20
2025-02-20

2025-02-20
2025-02-20
2025-02-20

2025-02-20
2025-02-20
2025-02-20
2025-02-20
2025-02-20

2025-02-20

VAN

Design Requirement - “Scaling should be cheap”

mockpip.
mockpip.

mockpip.

mockpip.
mockpip.

mockpip.

mockpip.
mockpip.
mockpip.
mockpip.

mockpip.

mockpip.

commands.
commands.

commands.

commands.
commands.

commands.

commands.
commands.
commands.
commands.

commands.

commands.

install
install

install

install
install

install

install
install
install
install

install

install:

[Variant: *109a2da5 " :
[Variant: 'cB111c07 :
[Variant: *b5789fbd "

[Variant: 5984] “8a11@85e’: NOT
[Variant: 5985] “dodff1f7 : NOT
[Variant: 5986] “44da9896 : NOT

Best Variant: "9091cdcd”

Variant-Data: fictional_tech :: quantum :: SUPERPOSITION
Variant-Data: fictional_tech :: risk_exposure :: 25
Variant-Data: fictional_tech :: technology :: auto_chef
e L

Installing: sandbox_project-0.0.1~9091cdc4-py3-none-any.whl ...

&

VAN

Design Requirement - “Forced variant deactivation”

[uv] pip install --no-variant dummy_project

64

VAN

Design Requirement - “Forced variant installation”

[uv] pip install --variant=9091cdc4 dummy_project

65

VAN

Design Requirement - “Caching is important or critical”

First call - analyze the platform
[uv] pip install dummy_project

Second call - reuse the platform analysis

[uv] pip install sandbox_project

444 ¢ 66

N

07

Parts that
needs work

ted by Jo Dekhtiar (NV

67

VA VAN
Variant Build “user experience”: Build Backend

¢ - Weneed:
A build backend that support Wheel Variant to “demo the idea”. O
What should be standardized between build backends and what should not.

444 ¢ 68

O

N\
Variant Build “user experience”: Build Matrix

We need: A smooth experience to build a large matrix of variants
=> Let’s build 200 variants of PyTorch.

We do not want: A complicated process to do that
Packager experience should be simple and intuitive
- No way to define a cross product of “features”

69

VAN
Validating “plugin” design to work with "uv’

We need: Plugin to be functional with both pip/poetry/pdm/hatch/uv/etc.

Potential Problem (to verify):
“entrypoint” is a very python-based feature and plugins provide a Python
interface. Let's ensure "uv' can effectively call the python interface (fro
ruff) and cache the result.

If not, we need to find a better idea

70

O

VAVAN
Is a “variant hash” the best approach ?

Pros:
It's incredibly fast => hash table
Allows arbitrary combination of any arbitrary metadata

Cons:
- | want the CUDA 12 and AVX512 package => which one is it ?

- No way to have “named configurations”

71

VA VAN
MVP from "mockpip™ to “real” pip’

We need: A real end-to-end implementation with pypa/pip

We do not want: A proof-of-concept using a super minimalist and narrow O
“mock’pip implementation.

444 ¢ 72

O

VA VN
Verifying Scaling => QuanSight RETEX

We need: Verify this approach scales to crazy size

73

Writing the PEP

74

Community
Engagement

ted by Jo Dekhtiar (NV

75

-/ AN

INext & Community - 0SS Community Engagement

Friday March 21st 2025 ~ 9am -> 1.30pm
WheelNext Community Summit @ META [Menlo Park]

- Validating and refining WheelNext’s roadmap
- Aligning on proposals & problem statements

O— Working together on common solutions for the Accelerated Compute Space

Attendees: . ‘.
o
Companies: Anaconda, Astral.sh, Amazon/AWS, Bloomberg, Google, ME T,g\, Microsoft, NVIDIA, Quansight, RedHat

(]
0OSS: Astropy, Jupyter, GPU-Mode, Numba, Numpy, Scikit-Learn, g(GBoosf, P§F£Python OSS’
[]

VAN
https://github.com/wheelnext Contribute
https://wheelnext.dev Participate .
O https://discuss.python.org/c/packaging/ Let's engage
A . ° ° . O
discord.com/channels/803025117553954132/ | *Join us on Discord

https://github.com/wheelnext
https://wheelnext.dev
https://discuss.python.org/c/packaging/
https://discord.com/channels/803025117553754132/1279204588196597811

Thank you for your attention

