
WheelNext
Engineering
Review

February 20, 2025

Community
Updates

2

Presented by Andy R. Terrel (NumFOCUS / NVIDIA)

3

🚀 OSS Community Attendee 🚀

4

🚀 Companies Attending 🚀

5

https://github.com/wheelnext

https://github.com/wheelnext

6

https://github.com/wheelnext

https://github.com/wheelnext

7

https://github.com/wheelnext

https://github.com/wheelnext

8

https://pypackaging-native.github.io/

https://pypackaging-native.github.io/

9

https://wheelnext.dev

https://wheelnext.dev

PEP XXX:
Wheel Variant

Problem
Statement01

11

Presented by Andy R. Terrel (NumFOCUS / NVIDIA)

Problem: Python Packaging lacks the ability to finely describe “hardware”

- No way to accurately describe the “hardware platform”
- What type of accelerators do you have (e.g. CUDA 11, CUDA 12, ROCM, TPU, etc.)
- What “compute capability” (e.g. SM 90, SM 85, etc.)
- What ARM version (e.g. ARMv7, ARMv8, etc.)
- What X86 version (e.g. x86_64-v2, x86_64-v3, etc)
- What special CPU instruction (e.g. AVX512, SSE, etc.)

- What about describing FPGA / ASIC support ?

- What about specific hardware function (e.g. AV1 encoding/decoding) ?

12

Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

13

Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

This can not be the best answer our community has - We must do better.

14

Why “Wheel Variants” ?

Problem: Which “flavor” of PyTorch is this command supposed to download ?

This can not be the best answer our

community has - We must do better.

15

Why “Wheel Variants” ?

$ [uv] pip install transformers # a package from HuggingFace that depends on PyTorch

Problem: Python Packaging lacks the ability to finely describe “hardware”

Some References:

- https://pypackaging-native.github.io/key-issues/gpus/

- https://pypackaging-native.github.io/key-issues/simd_support/

16

Why “Wheel Variants” ?

https://pypackaging-native.github.io/key-issues/gpus/
https://pypackaging-native.github.io/key-issues/simd_support/

Design
Axioms02

17

Presented by Barry Warsaw (Python Steering Council / NVIDIA)

https://wheelnext.dev/philosophy_and_design_space/

18

WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/

https://wheelnext.dev/philosophy_and_design_space/#evolution-not-revolution

 ~ Axiom 1 ~

“Evolution Not Revolution”

19

WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/#if-you-dont-care-now-you-wont-care-later

 ~ Axiom 2 ~

“If you don't care now, you won't care later”

20

WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/#dont-focus-on-a-single-tool-or-service

 ~ Axiom 3 ~

“Don't focus on a single tool or service”

21

WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/#favor-backward-compatible-changes-whenever-possible

 ~ Axiom 4 ~

“Favor backward compatible changes whenever possible”

22

WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/#be-intentful-and-explicit-on-what-is-being-broken-and-why

 ~ Axiom 5 ~

“Be intentful & explicit on what is being broken and why”

23

WheelNext - Design Axioms

https://wheelnext.dev/philosophy_and_design_space/#complexity-in-the-tooling-rather-than-user-experience

 ~ Axiom 6 ~

“Complexity in the tooling rather than user experience”

24

WheelNext - Design Axioms

Mode Of
Operation03

25

Presented by Barry Warsaw (Python Steering Council / NVIDIA)

https://wheelnext.dev/philosophy_and_design_space/#proof-of-concept-minimum-viable-product-first-pep-second

“Proof of Concept First - PEP Second”

26

WheelNext - Mode of Operation

https://wheelnext.dev/philosophy_and_design_space/#avoid-mission-creep

“Avoid mission creep”

27

WheelNext - Mode of Operation

User Rationale04

28

Presented by Emma Smith (MyPy Core / NVIDIA)

https://wheelnext.dev/proposals/pepxxx_wheel_variant_support/#rationale

● A user wants to install a version of NumPy that is accelerated for their CPU architecture

● A user wants to install PyTorch / JAX / vLLM that is accelerated for their GPU architecture

● A user wants to install a version of mpi4py that has certain features enabled (e.g. specific
MPI implementations for their hardware)

● SciPy wants to provide packages built against different BLAS libraries, like OpenBLAS and
Accelerate on macOS. This is something they indirectly do today using different macOS
platform tags

29

Wheel Variant - User Rationale

https://github.com/wheelnext/wheelnext/pull/2#discussion_r1957200935

https://wheelnext.dev/proposals/pepxxx_wheel_variant_support/#rationale

● A library maintainer wants to build their library for wasm32-wasi with and without pthreads
support

● A library maintainer wants to build their library for Pyodide on an Emscripten platform with
extensions for graphics compiled in

● A library maintainer wants to provide packages of their game library using different
graphics backends

● Manylinux cannot express x86-64-v2 requirements in Manylinux_2_34
30

Wheel Variant - User Rationale

http://github.com/pypa/manylinux/issues/1725

Design &
Feature Space05

31

Presented by Jonathan Dekhtiar (NVIDIA)

32

- We need: Needs to allow “arbitrary metadata”
=> (not GPU, CPU, TPU, FPGA, ASIC etc. or even hardware-focused)

- We do not want: not a “pre-approved list of tags” (e.g. CPU: arm64, x86_64, etc.)

- Why:
- We can’t know today the use cases of tomorrow (python for quantum compute?)
- The compute landscape is becoming more complex, more optimized everyday.
- We cannot hope to maintain a list of tags [too many, too many sources]
- Different python communities might use this feature for different purposes

Design Requirement - “Arbitrary Variant Definition”

33

- We need: We need to be able to combine variant information coming from
different sources [e.g. GPU Driver version & CPU support for AVX]

- We do not want: Wheel Variants to only be able to include WV information
from one source.

- Why:
- Wheel Variant “plugins” should be able to “simultaneously describe” a .whl file.

- We need to be able to combine information from different sources [GPU, CPU, etc.]

Design Requirement - “Arbitrary combination of METADATA”

34

- We need: Wheel Variants should not interfere with the normal “python
packaging/installer” workflow & ecosystem.

- We do not want: Wheel Variants to impact packages that don’t need it.

- Why:
- This is a niche feature that only affect a small percentages of project

- Not every Python users/maintainers should have to care

Design Requirement - “If you don’t need, you shouldn’t care”

35

- We need: Wheel Variant design should include a mechanism to ensure these
“special wheels” will be ignored by installers (e.g. uv, pip) that don’t support
them:

- Not yet implement
- Old release who didn’t support them

- We do not want: To confuse an installer that doesn’t support Wheel Variants.

- Why:
- It will be very hard to get the PEP accepted if it breaks any previous release of

every installers: uv, pip, etc.

Design Requirement - “Do not break old installers”

36

- We need: We need a standardized “plugin API” that all “build-backends”
[setuptools], “installers” [pip, uv], “workflow managers” [pdm, poetry, uv] can
use and rely on.

- We do not want: To depend on a public API inside of PIP: `from pip import XYZ`

- Why:
- To guarantee “tool agnosticism”, we can not depend on a public API in one tool.

- PyPA has consistently refused to maintain any “public user code-API” inside PIP.

Design Requirement - “No Public API inside PIP”

37

- We need: Ability to define “arbitrary metadata/tag” from outside the standard
 packaging tooling ecosystem (installers, build backends, etc.)

- We do not want: Have to send PRs to any number projects to “declare” the
 existence of a new metadata / tag.

- Why:
- Maintainers of the installer/packaging ecosystem can not be expected to become

expert on hardware (CPUs, GPUs, TPUs, ASIC, FPGAs, etc.)
=> they can’t be expected to review “FPGA-related code”

- The maintenance load to review all these PRs would be significant

Design Requirement - “Externally Defined: Plugin centric”

38

- We need:
- We need a way for users to specify:

- pluginA > pluginB (e.g. I care more about my GPU support than AVX support)
- Plugins needs a way to specify:

- featureA > featureB (e.g. x86-64-v2 is more important than AVX support)

- We do not want: a flat list of plugins and features with no relative priorities

- Why:
- Not all features have the same relative importance
- Multiple variants can match a given system (e.g. a generic and a specific)

Design Requirement - “2D Prioritization: plugin & feature”

39

- We need: It shouldn’t matter how many different variants are possible or
exists. Deciding which Variant to install should be near instant.

- We do not want: As we scale the number of variant / metadata, the install
command take significant time.

- Why:
- The search space can become very large very fast

- Combinatorial Products of features

Design Requirement - “Scaling should be cheap”

40

- We need: A way to cache, manage cache, void cache of the “platform
detection and variant resolution”.

- We do not want: Want to re-analyze the entire platform for every single `pip
install package` command

- Why:
- Loading a bunch of libraries to check versions can be expensive

- System calls to detect X, Y, Z can also be expensive

Design Requirement - “Caching is important or critical”

41

- We need: A way for an “expert user” to specify: they desire a specific variant
or set of variants in this specific order. Don’t do perform automatic resolution.
`[uv] pip --variant=ABC package`

- We do not want: Have no way for the user to overwrite the automatic
resolution if they so wishes.

- Why:
- CI Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

Design Requirement - “Forced variant installation”

42

- We need: A way for a user to “disable variant behavior”:
`[uv] pip install –no-variant package`

- We do not want: Have no way for the user to disable variant installation.

- Why:
- CI Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

Design Requirement - “Forced variant deactivation”

Technical
Proposal06

43

Presented by Jonathan Dekhtiar (NVIDIA)

44

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

45

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

● Defines “4 variables”

46

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

● Defines “4 variables”

● With “1 value assigned per variable”

47

Design Requirement - “Arbitrary combination of METADATA”

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 6b4c8391

Variant: fictional_hw :: architecture :: deepthought

Variant: fictional_hw :: compute_accuracy :: 10

Variant: fictional_hw :: compute_capability :: 10

Variant: fictional_hw :: humor :: 0

Variant: fictional_tech :: quantum :: foam

● Legal to combine “metadata”
from different sources/plugin.

=> Example: CUDA 12 with AVX

● Can really be anything so long it follows
the “standard format”
<provider_name> :: <variable> :: <value>

48

Design Requirement - “If you don’t need, you shouldn’t care”

https://github.com/pypa/pip/blob/main/src/pip/_internal/models/wheel.py#L22

wheel_file_regex = r“””^
 (?P<namever>
 (?P<name>[^\s-]+?)
 -(?P<ver>[^\s-]+?)
)
 (\-(?P<build>\d[^\s-]*))?
 -(?P<pyver>[^\s-]+?)
 -(?P<abi>[^\s-]+?)
 -(?P<plat>\S+)
\.whl$"””

match = wheel_file_regex.match(filename)
if not match:
 raise InvalidWheelFilename(f"{filename} is not a valid wheel filename.")

Design Requirement - “Do not break old installers”

49

Design Requirement - “If you don’t need, you shouldn’t care”

https://github.com/pypa/pip/blob/main/src/pip/_internal/models/wheel.py#L22

wheel_file_regex = r“””^
 (?P<namever>
 (?P<name>[^\s-]+?)
 -(?P<ver>[^\s-]+?)
)
 (\-(?P<build>\d[^\s-]*))?
 (~(?P<variant_hash>[0-9a-f]{8}))?
 -(?P<pyver>[^\s-]+?)
 -(?P<abi>[^\s-]+?)
 -(?P<plat>\S+)
\.whl$"””

match = wheel_file_regex.match(filename)
if not match:
 raise InvalidWheelFilename(f"{filename} is not a valid wheel filename.")

Design Requirement - “Do not break old installers”

● A new capture group called “variant hash”

● Illegal with the “former wheel filename regex”

● Uses special character “~” to guarantee:
○ a variant_hash can’t match: `build_id`
○ only free special char RFC 3986 compliant

■ No escaping in bash, windows, macOS
■ No escaping in URLs

50

Wheel Variant: dummy_project-0.0.1~36266d4d-py3-none-any.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

HASH 36266d4d

Design Requirement - “If you don’t need, you shouldn’t care”

Design Requirement - “Do not break old installers”

51

Design Requirement - “If you don’t need, you shouldn’t care”

-rw-r--r-- 1 user user 1266 Feb 20 06:50 dummy_project-0.0.1-py3-none-any.whl

-rw-r--r-- 1 user user 1778 Feb 20 06:50 dummy_project-0.0.1~36266d4d-py3-none-any.whl

-rw-r--r-- 1 user user 1773 Feb 20 06:50 dummy_project-0.0.1~4f8ae729-py3-none-any.whl

-rw-r--r-- 1 user user 1777 Feb 20 06:50 dummy_project-0.0.1~57768a46-py3-none-any.whl

-rw-r--r-- 1 user user 1795 Feb 20 06:50 dummy_project-0.0.1~6b4c8391-py3-none-any.whl

-rw-r--r-- 1 user user 1779 Feb 20 06:50 dummy_project-0.0.1~9091cdc4-py3-none-any.whl

-rw-r--r-- 1 user user 1760 Feb 20 06:50 dummy_project-0.0.1~e684be6f-py3-none-any.whl

Design Requirement - “Do not break old installers”

Standard Wheel

Wheel
Variants

METADATA File
Variant-hash: 36266d4d

52

Design Requirement - “No Public API inside PIP”

from variantlib.config import ProviderConfig

from my_plugin import __version__

class MyVariantPlugin:

 __provider_name__ = "my_plugin"

 __version__ = __version__

 def run(self) -> ProviderConfig | None:

 """If the plugin is able to determine this platform/machine supports

 custom "attributes/metadata" (defined and known by this plugin):

 => It returns a `ProviderConfig`, otherwise `None` (aka. ignore me).”””

 return ...

Design Requirement - “Externally Defined: Plugin centric”

[project.entry-points."variantlib.plugins"]

my_plugin = "my_plugin.plugin:MyVariantPlugin"

53

Design Requirement - “No Public API inside PIP”

from importlib.metadata import entry_points

plugins = entry_points().select(group="variantlib.plugins")

for plugin in plugins:

 logger.info(f"Loading plugin: {plugin.name} - v{plugin.dist.version}")

 # Dynamically load the plugin class

 plugin_class = plugin.load()

 # Instantiate the plugin

 plugin_instance = plugin_class()

 # Call the `run` method of the plugin

 ... = plugin_instance.run()

 # do something with the result of the plugins

Design Requirement - “Externally Defined: Plugin centric”

54

Design Requirement - “2D Prioritization: plugin & feature”

pip.conf or variant.toml

[variantlib]

provider_priority = ["fictional_tech", "fictional_hw"]

● Per project: `variant.toml` or inside `pyproject.toml`

● [Tool Specific] PIP - directly inside `pip.conf`

● [Tool Specific] UV - directly inside `uv.toml`

55

Design Requirement - “2D Prioritization: plugin & feature”

variantlib

from attrs import field

from attrs import frozen

@frozen

class KeyConfig:

 key: str = field()

 values: list[str] = field()

how to use it

KeyConfig(key="driver_version", values=["12.2.6", "12.2", "12"])

56

Design Requirement - “2D Prioritization: plugin & feature”

variantlib

from attrs import field

from attrs import frozen

@frozen

class ProviderConfig:

 provider: str = field()

 configs: list[KeyConfig] = field()

how to use it

ProviderConfig(

 provider="provider_name",

 configs=[

 KeyConfig(key="attr_nameA", values=["7", "4", "8", "12"]),

 KeyConfig(key="attr_nameB", values=["3", "7", "2", "18", "22"])

]

)

57

Design Requirement - “2D Prioritization: plugin & feature”

variantlib

from variantlib.config import ProviderConfig

from my_plugin import __version__

class MyVariantPlugin:

 __provider_name__ = "my_plugin"

 __version__ = __version__

 def run(self) -> ProviderConfig | None:

 return ProviderConfig(

 provider="my_plugin",

 configs=[

 KeyConfig(key="attr_nameA", values=["7", "4", "8", "12"]),

 KeyConfig(key="attr_nameB", values=["3", "7", "2", "18", "22"])

]

)

58

Design Requirement - “2D Prioritization: plugin & feature”

variantlib

from attrs import field

from attrs import frozen

@frozen

class VariantMeta:

 provider: str = field()

 key: str = field()

 value: str = field()

Using it

VariantMeta(provider="OmniCorp", key="access_key", value="secret_value")

Variant: OmniCorp :: access_key :: secret_value

59

Design Requirement - “2D Prioritization: plugin & feature”

variantlib

from attrs import field

from attrs import frozen

@frozen

class VariantDescription:

 data: list[VariantMeta] = field()

how to use it

VariantDescription([

 VariantMeta(provider="gpu_provider", key="driver_version", value="A.B.C"),

 VariantMeta(provider="cpu_provider", key="avx512", value="true"),

])

Variant: gpu_provider :: driver_version :: A.B.C

Variant: cpu_provider :: avx512 :: true
HASH abcd1234

60

Design Requirement - “2D Prioritization: plugin & feature”

config_custom_hw = ProviderConfig(

 provider="custom_hw",

 configs=[

 KeyConfig(key="driver_version", values=["1.3", "1.2", "1.1", "1"]),

 KeyConfig(key="hw_architecture", values=["3.4", "3"]),

],

)

config_networking = ProviderConfig(

 provider="networking",

 configs=[

 KeyConfig(key="speed", values=["10GBPS", "1GBPS", "100MBPS"]),

],

)

61

Design Requirement - “2D Prioritization: plugin & feature”

Ordering / Prioritization logic:

● More metadata match => Better

● Plugin A > Plugin B => User defined

● PluginA.featureA > PluginA.featureB => Plugin defined

Consequence:

● A variant tagged by all plugin (e.g. GPU & CPU variant) is prioritized over “just GPU or just CPU”

● A variant with more “metadata” (e.g. feature1, feature2, feature3, etc.) is more specific
=> more prioritized

62

Design Requirement - “2D Prioritization: plugin & feature”

Example:

● Plugin A => featureA
● Plugin B => featureB

Order:

● [pluginA.featureA, pluginB.featureB] => hash => abcd1234
● [pluginA.featureA] => hash => 01234567
● [pluginB.featureB] => hash => ab12cd34

63

[D 2025-02-20 15:33:01.863 mockpip.commands.install:108 v0.1.0] [Variant: 0000] `109a2da5`: NOT FOUND ...

[D 2025-02-20 15:33:01.863 mockpip.commands.install:108 v0.1.0] [Variant: 0001] `c0111c07`: NOT FOUND ...

[D 2025-02-20 15:33:01.863 mockpip.commands.install:108 v0.1.0] [Variant: 0002] `b5789fbd`: NOT FOUND ...

[...]

[D 2025-02-20 15:33:02.065 mockpip.commands.install:108 v0.1.0] [Variant: 5984] `8a11085e`: NOT FOUND ...

[D 2025-02-20 15:33:02.065 mockpip.commands.install:108 v0.1.0] [Variant: 5985] `d0dff1f7`: NOT FOUND ...

[D 2025-02-20 15:33:02.065 mockpip.commands.install:108 v0.1.0] [Variant: 5986] `44da9896`: NOT FOUND …

[I 2025-02-20 15:33:02.065 mockpip.commands.install:102 v0.1.0] ###### Best Variant: `9091cdc4` ######

[I 2025-02-20 15:33:02.065 mockpip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: quantum :: SUPERPOSITION

[I 2025-02-20 15:33:02.065 mockpip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: risk_exposure :: 25

[I 2025-02-20 15:33:02.065 mockpip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: technology :: auto_chef

[I 2025-02-20 15:33:02.065 mockpip.commands.install:105 v0.1.0] ######################################

[I 2025-02-20 15:33:02.065 mockpip.commands.install:130 v0.1.0] Installing: sandbox_project-0.0.1~9091cdc4-py3-none-any.whl ...

Design Requirement - “Scaling should be cheap”

64

[uv] pip install --no-variant dummy_project

Design Requirement - “Forced variant deactivation”

65

[uv] pip install --variant=9091cdc4 dummy_project

Design Requirement - “Forced variant installation”

66

First call - analyze the platform

[uv] pip install dummy_project

Second call - reuse the platform analysis

[uv] pip install sandbox_project

Design Requirement - “Caching is important or critical”

Parts that
needs work07

67

Presented by Jonathan Dekhtiar (NVIDIA)

Variant Build “user experience”: Build Backend

68

- We need:
- A build backend that support Wheel Variant to “demo the idea”.
- What should be standardized between build backends and what should not.

Variant Build “user experience”: Build Matrix

69

- We need: A smooth experience to build a large matrix of variants
=> Let’s build 200 variants of PyTorch.

- We do not want: A complicated process to do that
- Packager experience should be simple and intuitive
- No way to define a cross product of “features”

Validating “plugin” design to work with `uv`

70

- We need: Plugin to be functional with both pip/poetry/pdm/hatch/uv/etc.

- Potential Problem (to verify):
- “entrypoint” is a very python-based feature and plugins provide a Python

interface. Let’s ensure `uv` can effectively call the python interface (from
ruff) and cache the result.

- If not, we need to find a better idea

Is a “variant hash” the best approach ?

71

- Pros:
- It’s incredibly fast => hash table
- Allows arbitrary combination of any arbitrary metadata

- Cons:
- I want the CUDA 12 and AVX512 package => which one is it ?
- No way to have “named configurations”

MVP from `mockpip` to “real” `pip`

72

- We need: A real end-to-end implementation with pypa/pip

- We do not want: A proof-of-concept using a super minimalist and narrow
“mock”pip implementation.

Verifying Scaling => QuanSight RETEX

73

- We need: Verify this approach scales to crazy size

Writing the PEP

74

Community
Engagement

75

Presented by Jonathan Dekhtiar (NVIDIA)

WheelNext & Community - OSS Community Engagement

Save-The-Date: Friday March 21st 2025 ~ 9am -> 1.30pm
WheelNext Community Summit @ META [Menlo Park]

- Validating and refining WheelNext’s roadmap

- Aligning on proposals & problem statements

- Working together on common solutions for the Accelerated Compute Space

Attendees:
Companies: Anaconda, Astral.sh, Amazon/AWS, Bloomberg, Google, META, Microsoft, NVIDIA, Quansight, RedHat

OSS: Astropy, Jupyter, GPU-Mode, Numba, Numpy, Scikit-Learn, XGBoost, PSF (Python OSS)

Contributehttps://github.com/wheelnext

Participatehttps://wheelnext.dev

Let’s engagehttps://discuss.python.org/c/packaging/

Join us on Discorddiscord.com/channels/803025117553754132/

https://github.com/wheelnext
https://wheelnext.dev
https://discuss.python.org/c/packaging/
https://discord.com/channels/803025117553754132/1279204588196597811

Thank you for your attention

