Z N

@)
WheelNext |
Jonathan Dekhtiar
Open-Source -
. o . February 2025
Initiative
VAN

o (©®

Problem

Ol Statement

VAN
e What is WheelNext - Why fixing Python Packaging ?

Problem 1: PyPl.org and scaling

- Package size limitation (100MB / file by default - hard limit @ 1GB)
- Project size limitation (10 GB / project by default)

- Backlog of "exemption requests": O
- Most of the time: taking months to process
@) - PyTorch was stuck for months - it took significant effort both NV & META to “unstuck”
- Exact same with cuDNN and other “accelerated libraries”.
- Might get slightly better with “PyPI Organization”

444 ¢ 3

https://github.com/pypi/support

VAN
e What is WheelNext - Why fixing Python Packaging ?

Problem 2: Poor “User Experience” using different package indexes.

- External Package Hosting seems to be “just difficult” and difficult to get consensus on.
- No mechanism ~ standard across installers ~ to express relative index priority.

- Opportunity for package name collision across different indexes => Security concerns.

O

VAN
é What is WheelNext - Why fixing Python Packaging ?

Problem 3: Dealing with “compiled binaries/libs” is difficult.

- No support for symlinks in Python wheels - critical to reduce “packaging bloat”

- Lack of safe, robust, and portable approach for sharing native libraries between wheels O
- Duplication of common Dynamic Shared Objects (DSOs)
- Increase “package bloat” and load on PyPI infrastructure.

444 ¢ 5

https://pypackaging-native.github.io/other_issues/#lack-of-support-for-symlinks-in-wheels

VAN

e What is WheelNext - Why fixing Python Packaging ?

Problem 4: Optional-Dependencies lack the ability to express a “default”

Optional Dependencies aka. “extras” are often used to express different “backends”
- APl Backend: fastAPI vs Flask vs Django DRF
- GUI Backend: tkinter vs pyqt
- Compute Backend: CPU vs GPU vs FPGA vs ASIC
- Etc.

Problem: You need the user to specify at least one backend
- User must RTM (i.e. “Read the Manual)

UX: Overall, the user experience is just bad because we lack that “simple feature”.
=> Downloads “systematically” dependencies not always required.

VAN
e What is WheelNext - Why fixing Python Packaging ?

Problem 5: Python Packaging lacks the ability to finely describe “hardware”

- No way to accurately describe the “hardware platform”
- What type of accelerators do you have (e.g. CUDA 11, CUDA 12, ROCM, TPU, etc.)
- What “compute capability” (e.g. SM 90, SM 85, etc.)
- What ARM version (e.g. ARMv7, ARMvS, etc.) O
- What special CPU instruction (e.g. AVX512)

O- What about describing FPGA / ASIC support ?

- What about specific hardware function (e.g. AV1 encoding/decoding) ?

444 ¢ 7

VAN
e What is WheelNext - Why fixing Python Packaging ?

Problem 5: Python Packaging lacks the ability to finely describe “hardware”

PyTorch Build Stable (2.5.1) Preview (Nightly)
Your OS Linux Windows

Package Conda LibTorch Source

Language Python C++/Java

CUDA CUDA CUDA
Compute Platform 118 121 124 ROCm 6.2 CPU

pip3 install torch torchvision torchaudio --index-url https://download.pyt

Run this Command: oreh. orgwhifepy

VAN
e What is WheelNext - Why fixing Python Packaging ?

Problem 5: Python Packaging lacks the ability to finely describe “hardware”

PyTorch Build Stable (2.5.1) Preview (Nightly)

Package Conda

Language

Compute Platform CPU

ca®
R““\ECommand:

pip3 install torch torchvision torchaudio --index-url https://download.pyt
orxch.oxrg/whl/cpu

WheelNext

02 Proposals

VAAVN
PEP 771: Default Extra Requires

1. Default-Extra: flask|

2. Provides-Extra: fastapi

3. Requires-Dist: fastapi; extra == "fastapi"
4. Provides-Extra: flask

5. Requires-Dist: flask; extra == "flask"

6.

Provides-Extra: minimal

[project]
name = "package"
version = "1.0.0"

default-optional-dependency-keys = ["flask"]

fastapi = ["fastapi"]

1
2
3
4
5.
C> [project.optional-dependencies]
3 flask = ["flask"]

1

VAN
PEP 771: Default Extra Requires

1. Default-Extra: flask|

2. Provides-Extra: fastapi

3. Requires-Dist: fastapi; extra == "fastapi"

4. Provides-Extra: flask

5. Requires-Dist: flask; extra == "flask"

6. Provides-Extra: minimal
1. pip install package # install 5
2 pip install package[flask] # install package

[project] 3.

4,

pip install package[fastapi] # install pc
install packa

pip install package[]

=+
t

name = "package"

version = "1.0.0"

default-optional-dependency-keys = ["flask"]

fastapi = ["fastapi"]

1

2

3

4

5.

C> [project.optional-dependencies]
8 flask = ["flask"]

VAN

PEP XXX [WIP] Build Isolation Bypass for X

Desian / Proposal Space:

O

Do not disrupt the current "index’ and “extra-index’ interface and behavior

Do not disrupt the current resolution mechanism using "index” and "extra-index

Introduce a super-dimension “dependency-group”: O

Within the group: resolution as “usual”

Default Behavior: everything happen in group 0 => no user change

Can create & order different groups by priority

Create new flags and APlIs (e.g. 'pip.conf’) to define dependency-groups: non disruptive

444 ¢ 13

Ne)

10.

O J o U > W N

VAN
PEP 766: Explicit Priority Choices Among Multiple Indexes

[project]

name = "project"

version = "0.1.0"
description = "..."

readme = "README.md"
requires-python = ">=3.12"
dependencies = ["cchardet"]

[tool.uv]

no-build-isolation-package =

["cchardet"]

Critical to be able to build libraries
depending on other package’s ABI.

O

O

Solution: Let's standardize this “behavior’ across build backends & installers.

14

VAN
PEP 778: Symlink Support

[- Symbolic link!
/usr/1ib/x86_6U-1inux—-gnu/libpcre2-posix.a

/usr/1ib/x86_64-1inux—gnu/libpcre2-posix.so —> libpcre2-posix.so0.2.0.3
/usr/1ib/x86_6U-1linux—-gnu/libpcre2-posix.so.2 —> libpcre2-posix.so0.2.0.3
/usr/1ib/x86_6U-1linux—-gnu/libpcre2-posix.so0.2.0.3

« ® Standard Linux idiom of library name symlinking is currently inexpressible

e PEP 778 proposes a mechanism to record and reproduce symlink structure O
in Python package tooling to allow for shared libraries to be used at runtime
@) and link time, without duplication of bytes on disk or in wheels

WHY: https://pypackaqging-native.qgithub.io/other issues/#lack-of-support-for-symlinks-in-wheels

k 444 ¢ 15

https://pypackaging-native.github.io/other_issues/#lack-of-support-for-symlinks-in-wheels

VAN
PEP XXX [WIP] Wheel-Variant

Desian / Proposal Space:

- Needs to use a “plugin” to put the responsibility on the “provider side”.
Why: Installers (pip/uv/etc) can not contain “arbitrary logic” without becoming a mess.

- Needs to allow “arbitrary metadata” O
Why: we can’t know today the use cases of tomorrow.

- Needs to not disrupt the current ways wheels are being built & installed.
Why: What works today - needs to work in the same fashion - no change.

444 ¢ 16

y AN

https://github.com/orgs/wheelnext Join us on GitHub

O

https://github.com/orgs/wheelnext

