Z/2

PrOpcsa I: March 21, 2025
Wheel Va ria nts Jonathan Dekhtiar, NVIDIA
AN

O @/

Problem

Ol Statement

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

- No way to accurately describe the “hardware platform”
- What type of accelerators do you have (e.g. CUDA 11, CUDA 12, ROCM, TPU, etc.)
- What “compute capability” (e.g. SM 90, SM 85, etc.)
- What ARM version (e.g. ARMv7, ARMvS, etc.)
- What X86 version (e.g. x86_64-v2, x86_64-v3, etc) O
- What special CPU instruction (e.g. AVX512, SSE, etc.)

- What about describing FPGA / ASIC support ?

- What about specific hardware function (e.g. AV1 encoding/decoding) ?

444 ¢ 3

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

PyTorch Build Stable (2.5.1) Preview (Nightly)

Package Conda

Language

, \\
Compute Platform ROCm 6.2 _

ca®

. ©
1“\5- pip3 install torch torchvision torchaudio --index P T h
R} .o COMIMaANG: orch.oxrg/whl/cpu y Orc

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

Linux, Mac, Mac, Windows, Windows
aarch64 x86_64 aarch64 x86_64 WSL2, x86_64

jax<0.4.38 yes yes

NVIDIA
GPU

Google BT n/a

O Cloud TPU

experimental

n/a experimental nfa

Intel GPU experimental nfa nfa n/a

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

:{05.X] 3 Stable (25.02) Nightly (25.04a)

PACKAGES

ADDITIONAL JupyterLab NetworkY “(
PACKAGES
wer 2

cnannel_priority: strict fll5:) channel_priority: flexible [[g¢El

conda create -n rapids-25.02 -c rapidsai -c conda-forge -c nvidia \
rapids=25.02 python=3.12 'cuda-version>=12.0,<=12.8"'

COPY COMMAND @

VAN
Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

e Some References:

- https://pypackaging-native.qithub.io/key-issues/gpus/

O- https://pypackaging-native.github.io/key-issues/simd_support/

https://pypackaging-native.github.io/key-issues/gpus/
https://pypackaging-native.github.io/key-issues/simd_support/

02 User Rationale g

VAN

Wheel Variant - User Rationale

https://wheelnext.dev/proposals/pepxxx wheel variant support/trationale

e A user wants to install a version of NumPy that is accelerated for their CPU architecture
e A user wants to install PyTorch / JAX / vLLM that is accelerated for their GPU architecture

e A user wants to install a version of mpi4py that has certain features enabled
(e.g. specific MPI implementations for their hardware) O

e SciPy wants to provide packages built against different BLAS libraries, like OpenBLAS and
O Accelerate on macOS. This is something they indirectly do today using different macOS platform
tags

e Manylinux cannot express x86-64-v2 requirements in Manylinux_2 34

444 ¢ 9

https://github.com/wheelnext/wheelnext/pull/2#discussion_r1957200935
http://github.com/pypa/manylinux/issues/1725

Desigh &

03 Feature Space g

VAN

Design Requirement - “Arbitrary Variant Definition”

- We need: Needs to allow “arbitrary metadata”
=> (not GPU, CPU, TPU, FPGA, ASIC etc. or even hardware-focused)

- We do not want: not a “pre-approved list of tags™ (e.g. CPU: arm64, x86_64, etc.)

Wy O

We can’t know today the use cases of tomorrow (python for quantum compute?)
The compute landscape is becoming more complex, more optimized everyday.
We cannot hope to maintain a list of tags [too many, too many sources]
Different python communities might use this feature for different purposes

444 ¢ 1

VAN

Design Requirement - “Arbitrary combination of METADATA”"

O

We need: We need to be able to combine variant information coming from
different sources [e.g. GPU Driver version & CPU support for AVX]

We do not want: Wheel Variants to only be able to include WV information
from one source. O

Why:
- Wheel Variant “plugins” should be able to “simultaneously describe” a .whl file.

- We need to be able to combine information from different sources [GPU, CPU, etc.]

444 ¢ 12

VAN

Design Requirement - “If you don't need, you shouldn’t care”

O

We need: Wheel Variants should not interfere with the normal “python

packaging/installer” workflow & ecosystem.

We do not want: Wheel Variants to impact packages that don'’t need it.

O

Why:
- This is a niche feature that only affect a small percentages of project

- Not every Python users/maintainers should have to care

444 ¢ 13

VAN

Design Requirement - “Do not break old installers”

- We need: Wheel Variant design should include a mechanism to ensure these
“special wheels” will be ignored by installers (e.g. uv, pip) that don’t support

them:
Not yet implement
- Old release who didn’t support them

- We do not want: To confuse an installer that doesn’t support Wheel Variants.

O— Why:

It will be very hard to get the PEP accepted if it breaks any previous release of
every installers: uv, pip, etc.

444 ¢ 14

VAN
Design Requirement - “No Public API inside PIP”

- We need: We need a standardized “plugin API” that all “build-backends”
[setuptools], “installers” [pip, uv], “workflow managers” [pdm, poetry, uv] can
use and rely on.

- We do not want: To depend on a public API inside of PIP: “from pip import XYZ‘O

- Why:
@) i

To guarantee “tool agnosticism”, we can not depend on a public APl in one tool.

- PyPA has consistently refused to maintain any “public user code-API” inside PIP.

444 ¢ 15

VAN

Design Requirement - “Externally Defined: Plugin centric”

We need: Ability to define “arbitrary metadata/tag” from outside the standard
packaging tooling ecosystem (installers, build backends, etc.)

We do not want: Have to send PRs to any number projects to “declare” the
existence of a new metadata / tag.

O
- Why:

Maintainers of the installer/packaging ecosystem can not be expected to become
expert on hardware (CPUs, GPUs, TPUs, ASIC, FPGAs, etc.)
=> they can’t be expected to review “FPGA-related code”

- The maintenance load to review all these PRs would be significant

444 ¢ 16

VAN

Design Requirement - “2D Prioritization: plugin & feature”

- We need:
- We need a way for users to specify:
- pluginA > pluginB (e.g. | care more about my GPU support than AVX support)
- Plugins needs a way to specify:
- featureA > featureB (e.g. x86-64-v2 is more important than AVX support)

- We do not want: a flat list of plugins and features with no relative priorities

@)
- Why:

Not all features have the same relative importance
Multiple variants can match a given system (e.g. a generic and a specific)

17

VAN

Design Requirement - “Scaling should be cheap”

- We need: It shouldn’t matter how many different variants are possible or
exists. Deciding which Variant to install should be near instant.

- We do not want: As we scale the number of variant / metadata, the install
command take significant time. O

- Why:
@) i

The search space can become very large very fast

- Combinatorial Products of features

444 ¢ 18

VAN

Design Requirement - “Caching is important or critical”

- We need: A way to cache, manage cache, void cache of the “platform
detection and variant resolution”.

- We do not want: Want to re-analyze the entire platform for every single "pip
install package’ command O

- Why:
@) i

Loading a bunch of libraries to check versions can be expensive

- System calls to detect X, Y, Z can also be expensive

444 ¢ 19

VAN

Design Requirement - “Forced variant installation”

o

We need: A way for an “expert user” to specify: they desire a specific variant
or set of variants in this specific order. Don’t do perform automatic resolution.
‘[uv] pip --variant=ABC package’

We do not want: Have no way for the user to overwrite the automatic
resolution if they so wishes. O

Why:
- Cl Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

444 ¢ 20

VAN

Design Requirement - “Forced variant deactivation”

- We need: A way for a user to “disable variant behavior”:
“[uv] pip install —no-variant package

- We do not want: Have no way for the user to disable variant installation.

- Why:
- CI Systems may use this
O . .
- Advanced users with specific use-cases

- Going around a bug in a specific variant

444 ¢ 21

Technical

04 Proposal

VAN

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1-py3-none-any-36266d4d+HAL900600.whl

METADATA File

Variant-hash: 36266d4d e Plugin Name: "fictional_hw"

Variant { fictional_hw }: architecture :: HAL9000
Variant] fictional_hw |: compute_accuracy :: @
Variant] fictional_hw |: compute_capability ::

fictional_hw J: humor :: 2

444 ¢ 23

VAN

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1-py3-none-any-36266d4d+HAL900600.whl

METADATA File
Variant-hash: 36266d4d e Plugin Name: "fictional_hw"

Variant: fictional_hw :: architecture :: . .
Defines “4 variables” .

Variant: fictional_hw :3j compute_accuracy ::

Variant: fictional_hw : 3 compute_capability |::

(Variant: fictional_hw ::{ humor :: 2

444 ¢ 24

VA VN
Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1-py3-none-any-36266d4d+HAL900600.whl

METADATA File
Variant-hash: 36266d4d e Plugin Name: "fictional_hw"

Variant: fictional_hw :: architedture :: HAL9000 . .
- y e Defines “4 variables” .

Variant: fictional_hw :: compute_accuracy :: ©

Variant: fictional_hw :: computecapability :: e With “1value assigned per variable”

(Variant: fictional_hw ::

444 ¢ 25

VA VN
Design Requirement - “Arbitrary combination of METADATA”"

Wheel Variant: dummy_project-0.0.1-py3-none-any-6b4c8391+deepthought+quantum_foam.whl
METADATA File

Variant-hash: 6b4c8391

deepthought) Legal to combine “metadata”

Variant: fictional_hw :: architecture :: ; <
from different sources/plugin.

Variant: fictional_hw :: compute_accuracy :: 10

Variant: fictional_hw :: compute_capability :: 10 => Example: CUDA 12 with AVX512
Variant: fictional_hw :: humor :: 0

Can really be anything so long it follows
the “standard format”
<provider_name> :: <variable> :: <value>

Variant: fictional_tech :: quantum :: foam

VAN

Design Requirement - “If you don't need, you shouldn’t care”

Design Requirement - “Do not break old installers”

Wheel Variant: dummy_project-0.0.1-none-any-36266d4d+HAL9000.whl

METADATA File

Variant-hash: 36266d4d
Variant:ffictional_hw :: architecture :: HAL900O
Variant:| fictional_hw :: compute_accuracy :: ©

Variant:| fictional_hw :: compute_capability :: 6 :> HASH :> 36266d4d

:\fictional_hw :: humor :: 2

444 ¢ 27

VAN

Design Requirement - “If you don't need, you shouldn’t care”

Design Requirement - “Do not break old installers”

Wheel Variant: dummy_project-0.0.1-none-any-36266d4d4HAL9000 Jwhl

METADATA File \
Variant-hash: 36266d4d

Variant:ffictional_hw :: architecture :: HAL9000

)) HASH D) 36266d4d

Human Readable Alias

Variant:| fictional_hw :: compute_accuracy :: ©

Variant:| fictional_hw :: compute_capability ::

:\fictional_hw :: humor :: 2

444 ¢ 28

VAN

Design Requirement - “If you don’t need, you shouldn't care” O

Design Requirement -

-rw-r--r--

-rw-r--r--

-rw-r--r--

-rw-r--r--

-rw-r--r--

-rw-r--r--

dummy_project-0.

dummy_project-0.
dummy_project-0.
dummy_project-0.
dummy_project-0.
dummy_project-0.
dummy_project-0.

“Do not break old installers”

.1-py3-none-any.whl

.1-py3-none-any-36266d4d+hal9600.whl
.1-py3-none-any-4f8ae729 .whl
.1-py3-none-any-57768a46.whl
.1-py3-none-any-6b4c8391+deepthought.whl
.1-py3-none-any-96091cdc4.whl

.1-py3-none-any-e684be6f.whl

METADATA File
Variant-hash: 36266d4d

VAN

Design Requirement - “Scaling should be cheap”

2025-02-20 :33:01. ip.commands.install: 1. [Variant: *109a2da5" :
2025-02-260 :33:01. ip.commands.install: L1, [Variant: "c0111cO7
2025-02-20 :33:01. ip.commands.install: 1. [Variant: "b5789fbd " :

2025-02-260 :33:02. ip.commands.install: L1, [Variant: 5984] “8a11@85e’: NOT
2025-02-20 :33:02. ip.commands.install: 1. [Variant: 5985] “dodff1f7 : NOT
2025-02-20 :33:02. ip.commands.install: 1. [Variant: 5986] “44da9896 : NOT

2025-02-20 :33:02. ip.commands.install: 1. ###### Best Variant: '90971cdcd’ ######

2025-02-20 :33:02. ip.commands.install: 1. Variant-Data: fictional_tech :: quantum :: SUPERPOSITION
2025-02-20 :33:02. ip.commands.install: 1. Variant-Data: fictional_tech :: risk_exposure :: 25
2025-02-20 :33:02. ip.commands.install: 1. Variant-Data: fictional_tech :: technology :: auto_chef
2025-02-20 :33:02. ip.commands.install: . e

2025-02-20 :33:02. ip.commands.install: 1. Installing: sandbox_project-0.0.1-py3-none-any-9091cdc4+autochef.whl ..

Thank you for your attention

